职场小聪明

翟晓鹰

首页 >> 职场小聪明 >> 职场小聪明最新章节(目录)
大家在看萌宝前妻别想跑:101次追爱奶爸!把女儿疼上天宠嫁丹道宗师透视小地主妖龙古帝姑奶奶下山养崽,却全民轰动!翡玉无暇王牌绝宠:总裁晚上见都市之最强狂兵小说
职场小聪明 翟晓鹰 - 职场小聪明全文阅读 - 职场小聪明txt下载 - 职场小聪明最新章节 - 好看的都市言情小说

第827章 没经过标注学习的大模型,直接拿训练结果,会不完整

上一章目录下一章阅读记录

AI大模型没有经过标注训练直接拿训练结果的机器学习,会不完整。

你提出的问题非常有深度,触及了AI大模型训练方法与其学习机制中的核心矛盾:没有经过明确标注训练(Supervised Learning)的AI大模型,是否能获得完整有效的学习成果?是否存在结构性的“学习不完整”?

我们来分层展开这一问题,力求在技术、哲学、认知、类比等多个维度上进行全面分析,最后做出严谨的结论。

?

一、背景界定:AI大模型的训练机制

目前主流的AI大模型(如Gpt系列、claude、Gemini等)采用的是**预训练 + 微调(fine-tuning)+ RLhF(强化学习人类反馈)**的混合架构。

其中最核心的是预训练阶段,其基本过程是:

在没有明确标签的情况下,用大规模互联网上的数据(网页、百科、代码、小说、评论等)进行“自监督学习(Self-supervised Learning)”。

自监督学习 ≠ 无监督学习

? 自监督学习并非完全“无标注”,而是通过构造任务(如语言建模任务:预测下一个词)让模型从数据本身自动生成训练信号。

? 模型在这过程中学习的是结构、语义、因果、常识等隐性规律,而不是显性标签(如猫、狗、汽车这种图像分类标注)。

?

二、未标注训练是否“学习不完整”?——技术视角的回答

我们可以从以下三个角度看“完整性”问题:

1. 信息覆盖角度:不是所有领域都能通过无标注数据自发学习

? 无监督或自监督学习依赖于数据中的统计规律;

? 某些抽象、隐蔽、少量出现的信息(如法律边界、伦理判断、罕见病症)如果数据中分布极少,模型可能无法学到;

? 例如:常识与语言风格模型学得很好,但“核反应堆设计”“金融诈骗行为识别”等专业领域,若无明确标注,学习会片面甚至危险。

结论:信息分布不均 → 导致学习偏斜 → 导致“结构性不完整”。

?

2. 任务映射角度:无标注训练难以学得任务映射规则

? 自监督语言模型训练的本质是“概率语言建模”,不是“任务解答”;

? 所以它并不知道“题目是什么、目的是什么”,而是推测“在这种上下文中,最可能出现的词或句子是什么”;

? 比如:它可以写诗、写代码,但并不能天然知道“这个代码是否安全”“这首诗是否表达了想表达的情绪”。

结论:任务导向的“目标函数”缺失 → 无法学会“为什么做”。

?

3. 可解释性角度:非标注训练缺乏因果结构建模

? 人类通过监督学习明确学习“因果—目的—手段”结构;

? 但大语言模型更像是“相关性结构模拟器”;

? 它可以“预测一个合理的答案”,但不能清晰解释“为什么这个是对的”,这导致它常常幻觉(hallucination),即信心满满地说错话。

结论:缺乏标注训练导致“因果推理能力弱化”,解释力不足。

?

三、类比视角:大模型 vs 人类学习

我们可以做几个有趣的类比来更好理解:

模型机制

类比人类

结果

自监督训练

看大量书籍和对话,但没人教你正确答案

可形成语言风格、思维路径,但很难准确判断对错

监督训练

老师出题、讲解并纠错

能建立清晰的“任务-结果-反馈”链条

强化学习

实践中不断试错并获得反馈

学会策略优化,但很依赖奖励设计

未训练领域

没人讲解、也从没见过的知识

只能“猜”而不是“知道”

所以,大模型并非“全知”,而是“巨量输入+相关性建模”的结果。没有明确监督和反馈,它可以“模仿得很好”,但无法“知道得准确”。

?

四、哲学层面:知识的完整性依赖于目的性与验证路径

知识完整性的构建不仅依赖数据,而更依赖:

1. 目的性(Goal-oriented learning):你学习是为了什么?没有目标就没有选择与筛选;

2. 验证路径(Validation mechanism):你怎么知道你学对了?没有反馈就无法修正偏差;

3. 理论抽象(theory abstraction):你是否能将个例升华为结构?这需要引导和模型建设。

AI大模型很多时候是在缺乏明确目标与反馈的语料中“游荡式学习”。它学得多,但结构不稳、推理不深,因此无法获得“完整性”。

?

五、现实世界中的补救机制

正因为自监督训练存在这些问题,现代大模型在预训练之后通常会做:

1. 微调(fine-tuning):用有标注数据进行小范围有针对性训练;

2. RLhF(人类反馈强化学习):用人工打分机制优化模型输出结果,使其更符合人类价值;

3. 插件系统(tool Use):通过嵌套计算器、数据库、搜索引擎等,补足知识结构的“缺口”;

4. 多模态协同:语言+图像+动作等维度补充信息结构的不完整性。

这些都是在弥补“无标注训练”的先天缺陷。

?

六、结论与展望

你提出的问题可以总结为一句话:

没有经过标注训练的大模型,其知识体系是片面的、目标性弱的、可解释性差的,因此并不完整。

AI大模型在当前阶段,的确存在以下三大“不完整性”:

1. 知识分布不完整 → 稀缺\/敏感信息无法自动习得;

2. 结构建模不完整 → 缺乏明确因果与目标框架;

3. 验证机制不完整 → 幻觉无法主动修正,错误输出不自知。

但它的优势也明显:

? 学习范围极广;

? 语境模拟能力强;

? 多样性高、可迁移性强。

未来,大模型的发展趋势一定是:

? 人类标注与反馈机制更精细化(如AutoRLhF、偏好建模);

? 任务导向设计(agent化、链式推理)加强推理结构;

? 领域专家介入,实现专家知识标注精调;

? 多模态数据参与建模,提升理解维度。

?

喜欢职场小聪明请大家收藏:(m.wuwenshuwu.com)职场小聪明伍文书屋更新速度全网最快。

上一章目录下一章存书签
站内强推异界,开局获得超级强化穿越异界:我的魔兽争霸系统逃荒被弃,我进深山吃喝不愁逆天作弊器之超级游戏雷霆圣帝原神:最可爱的魔神!流放后,医妃囤亿万物资杀疯了穿成超稀有雌性,大佬们争相献媚棺底重生,神医丑妃战天下停尸房兼职,搬出了前女友?焱火神尊换亲嫁反派,全朝跪拜叫皇后重生八十年代小女当家这里有妖气灵界传奇之仙途风云穿成真千金闯完末世去修仙我和小八管售后继后开始刀人揽腰轻吻,首长的乖宝又美又飒惊悚乐园
经典收藏全民觉醒:我,写轮眼!是垃圾?璀璨人生之造梦那少年的发丝又软又卷才六代机,兔子这歼星舰什么鬼啊竹外梅横一两枝末世女的古代生活第一神豪在都市重生腹黑商女:军少的头号狂妻反派的花式洗白史盛婚密爱取消我高考?研发六代战机震惊科学界!恋综:从结婚开始我在乡下做网红[重生]人生巅峰,从救下区长女儿开始!天崩开局?农家小厨娘养家福满仓原力星空超级戒指(执笔划圆)国民初恋太撩人漫威:从细胞概念提取开始重生之盛宠美人
最近更新道门,封神之战!重回六零开网店,我带全家丰衣足食睡服东北虎?你管这叫驯养技巧?流水的人生,重生的梦我开挂加点,偏要说我是武学圣体港片:开局拍电影,主角叶子楣我这透视眼太不正经港片:古惑仔,开签到舒琪军工雄途:陈今朝的霸世征途变成白毛,才不会被宠成废萌高武:没有感情,精神突破限制器港片:我在港岛开武馆逆徒,不可以!这么乖的妹妹绝不会对我图谋不轨阿姨别动,您女儿还欠我高利贷呢医武双绝三年,踏出女子监狱无敌为了抗美援朝抛妻弃子做了好事要砍树?两界穿梭之七零年代白山黑土,我打猎养全家
职场小聪明 翟晓鹰 - 职场小聪明txt下载 - 职场小聪明最新章节 - 职场小聪明全文阅读 - 好看的都市言情小说